Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gen Subj ; 1865(11): 129979, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34364973

RESUMO

BACKGROUND: Copper and lipid metabolism are intimately linked, sharing a complex, inverse relationship in the periphery (outside of the central nervous system), which remains to be fully elucidated. SCOPE: Copper and lipids have independently been implicated in the pathogenesis of diseases involving dyslipidaemia, including obesity, cardiovascular disease and non-alcoholic fatty liver disease and also in Wilson disease, an inherited disorder of copper overload. Here we review the relationship between copper and lipid regulatory pathways, which are potential druggable targets for therapeutic intervention. MAJOR CONCLUSIONS: While the inverse relationship between copper and lipids is apparent, tissue-specific roles for the copper regulatory protein, ATP7B provide further insight into the association between copper and lipid metabolism. GENERAL SIGNIFICANCE: Understanding the relationship between copper and lipid metabolism is important for identifying druggable targets for diseases with disrupted copper and/or lipid metabolism; and may reveal similar connections within the brain and in neurological diseases with impaired copper and lipid transport.


Assuntos
Cobre/metabolismo , Animais , Humanos , Metabolismo dos Lipídeos
2.
Dis Model Mech ; 13(2)2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31969342

RESUMO

ATP7A encodes a copper-transporting P-type ATPase and is one of 23 genes in which mutations produce distal hereditary motor neuropathy (dHMN), a group of diseases characterized by length-dependent axonal degeneration of motor neurons. We have generated induced pluripotent stem cell (iPSC)-derived motor neurons from a patient with the p.T994I ATP7A gene mutation as an in vitro model for X-linked dHMN (dHMNX). Patient motor neurons show a marked reduction of ATP7A protein levels in the soma when compared to control motor neurons and failed to upregulate expression of ATP7A under copper-loading conditions. These results recapitulate previous findings obtained in dHMNX patient fibroblasts and in primary cells from a rodent model of dHMNX, indicating that patient iPSC-derived motor neurons will be an important resource for studying the role of copper in the pathogenic processes that lead to axonal degeneration in dHMNX.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Modelos Biológicos , Atrofia Muscular Espinal/patologia , Sequência de Aminoácidos , Sequência de Bases , Diferenciação Celular , Cobre/metabolismo , ATPases Transportadoras de Cobre/genética , Regulação para Baixo/genética , Metabolismo Energético , Fibroblastos/metabolismo , Fibroblastos/patologia , Homeostase , Humanos , Cariótipo , Mitocôndrias/metabolismo , Neurônios Motores/patologia , Mutação/genética , Fenótipo , Medula Espinal/patologia
3.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 5): 392-396, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31045569

RESUMO

Grx1, a cytosolic thiol-disulfide oxidoreductase, actively maintains cellular redox homeostasis using glutathione substrates (reduced, GSH, and oxidized, GSSG). Here, the crystallization of reduced Grx1 from the yeast Saccharomyces cerevisiae (yGrx1) in space group P212121 and its structure solution and refinement to 1.22 Šresolution are reported. To study the structure-function relationship of yeast Grx1, the crystal structure of reduced yGrx1 was compared with the existing structures of the oxidized and glutathionylated forms. These comparisons revealed structural differences in the conformations of residues neighbouring the Cys27-Cys30 active site which accompany alterations in the redox status of the protein.


Assuntos
Cisteína/química , Glutarredoxinas/química , Glutationa/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glutationa/metabolismo , Modelos Moleculares , Oxirredução , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato
4.
J Mol Biol ; 431(2): 158-177, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30552876

RESUMO

The tripeptide glutathione (GSH) and its oxidized form glutathione disulfide (GSSG) constitute a key redox couple in cells. In particular, they partner protein thiols in reversible thiol-disulfide exchange reactions that act as switches in cell signaling and redox homeostasis. Disruption of these processes may impair cellular redox signal transduction and induce redox misbalances that are linked directly to aging processes and to a range of pathological conditions including cancer, cardiovascular diseases and neurological disorders. Glutaredoxins are a class of GSH-dependent oxidoreductase enzymes that specifically catalyze reversible thiol-disulfide exchange reactions between protein thiols and the abundant thiol pool GSSG/GSH. They protect protein thiols from irreversible oxidation, regulate their activities under a variety of cellular conditions and are key players in cell signaling and redox homeostasis. On the other hand, they may also function as metal-binding proteins with a possible role in the cellular homeostasis and metabolism of essential metals copper and iron. However, the molecular basis and underlying mechanisms of glutaredoxin action remain elusive in many situations. This review focuses specifically on these aspects in the context of recent developments that illuminate some of these uncertainties.


Assuntos
Dissulfetos/metabolismo , Glutarredoxinas/metabolismo , Glutationa/metabolismo , Proteínas/metabolismo , Compostos de Sulfidrila/metabolismo , Animais , Catálise , Homeostase/fisiologia , Humanos , Oxirredução , Transdução de Sinais/fisiologia
6.
J Neurochem ; 137(3): 360-70, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26851457

RESUMO

Glutathione (GSH) is a tripeptide often considered to be the master antioxidant in cells. GSH plays an integral role in cellular redox regulation and is also known to have a role in mammalian copper homeostasis. In vitro evidence suggests that GSH is involved in copper uptake, sequestration and efflux. This study was undertaken to further investigate the roles that GSH plays in neuronal copper homeostasis in vivo, using the model organism Drosophila melanogaster. RNA interference-mediated knockdown of the Glutamate-cysteine ligase catalytic subunit gene (Gclc) that encodes the rate-limiting enzyme in GSH biosynthesis was utilised to genetically deplete GSH levels. When Gclc was knocked down in all neurons, this caused lethality, which was partially rescued by copper supplementation and was exacerbated by additional knockdown of the copper uptake transporter Ctr1A, or over-expression of the copper efflux transporter ATP7. Furthermore, when Gclc was knocked down in a subset of neuropeptide-producing cells, this resulted in adult progeny with unexpanded wings, a phenotype previously associated with copper dyshomeostasis. In these cells, Gclc suppression caused a decrease in axon branching, a phenotype further enhanced by ATP7 over-expression. Therefore, we conclude that GSH may play an important role in regulating neuronal copper levels and that reduction in GSH may lead to functional copper deficiency in neurons in vivo. We provide genetic evidence that glutathione (GSH) levels influence Cu content or distribution in vivo, in Drosophila neurons. GSH could be required for binding Cu imported by Ctr1A and distributing it to chaperones, such as Mtn, CCS and Atox1. Alternatively, GSH could modify the copper-binding and transport activities of Atox1 and the ATP7 efflux protein via glutathionylation of copper-binding cysteines.


Assuntos
Cobre/deficiência , Drosophila melanogaster/metabolismo , Glutationa/biossíntese , Neurônios/patologia , Animais , Axônios/ultraestrutura , Calcitonina/farmacologia , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Cobre/uso terapêutico , Proteínas de Transporte de Cobre , ATPases Transportadoras de Cobre , Dieta , Proteínas de Drosophila/genética , Feminino , Técnicas de Silenciamento de Genes , Glutamato-Cisteína Ligase/genética , Larva , Neurônios/metabolismo , Neuropeptídeos/biossíntese , Fragmentos de Peptídeos/farmacologia , Interferência de RNA , Asas de Animais/anormalidades
7.
Neurochem Res ; 41(3): 554-67, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26318862

RESUMO

Mitochondrial dysfunction, ubiquitin-proteasomal system impairment and excitotoxicity occur during the injury and death of neurons in neurodegenerative conditions. The aim of this work was to elucidate the cellular mechanisms that are universally altered by these conditions. Through overlapping expression profiles of rotenone-, lactacystin- and N-methyl-D-aspartate-treated cortical neurons, we have identified three affected biological processes that are commonly affected; oxidative stress, dysfunction of calcium signalling and inhibition of the autophagic-lysosomal pathway. These data provides many opportunities for therapeutic intervention in neurodegenerative conditions, where mitochondrial dysfunction, proteasomal inhibition and excitotoxicity are evident.


Assuntos
Autofagia , Sinalização do Cálcio , Lisossomos/metabolismo , Neurônios/metabolismo , Estresse Oxidativo , Acetilcisteína/análogos & derivados , Acetilcisteína/toxicidade , Animais , Humanos , Análise em Microsséries , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/efeitos dos fármacos , Praguicidas/toxicidade , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/toxicidade , Receptores de N-Metil-D-Aspartato/metabolismo , Rotenona/toxicidade , Ubiquitina/metabolismo
9.
Metallomics ; 7(11): 1459-76, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26313539

RESUMO

Copper is an essential micronutrient involved in fundamental life processes that are conserved throughout all forms of life. The ability of copper to catalyze oxidation-reduction (redox) reactions, which can inadvertently lead to the production of reactive oxygen species (ROS), necessitates the tight homeostatic regulation of copper within the body. Many cancer types exhibit increased intratumoral copper and/or altered systemic copper distribution. The realization that copper serves as a limiting factor for multiple aspects of tumor progression, including growth, angiogenesis and metastasis, has prompted the development of copper-specific chelators as therapies to inhibit these processes. Another therapeutic approach utilizes specific ionophores that deliver copper to cells to increase intracellular copper levels. The therapeutic window between normal and cancerous cells when intracellular copper is forcibly increased, is the premise for the development of copper-ionophores endowed with anticancer properties. Also under investigation is the use of copper to replace platinum in coordination complexes currently used as mainstream chemotherapies. In comparison to platinum-based drugs, these promising copper coordination complexes may be more potent anticancer agents, with reduced toxicity toward normal cells and they may potentially circumvent the chemoresistance associated with recurrent platinum treatment. In addition, cancerous cells can adapt their copper homeostatic mechanisms to acquire resistance to conventional platinum-based drugs and certain copper coordination complexes can re-sensitize cancer cells to these drugs. This review will outline the biological importance of copper and copper homeostasis in mammalian cells, followed by a discussion of our current understanding of copper dysregulation in cancer, and the recent therapeutic advances using copper coordination complexes as anticancer agents.


Assuntos
Antineoplásicos , Complexos de Coordenação , Cobre , Neoplasias , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Pesquisa Biomédica , Complexos de Coordenação/química , Complexos de Coordenação/uso terapêutico , Cobre/metabolismo , Cobre/fisiologia , Cobre/uso terapêutico , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/fisiopatologia
10.
Biometals ; 27(4): 661-72, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24816595

RESUMO

Glutaredoxin1 (GRX1) is a glutathione (GSH)-dependent thiol oxidoreductase. The GRX1/GSH system is important for the protection of proteins from oxidative damage and in the regulation of protein function. Previously we demonstrated that GRX1/GSH regulates the activity of the essential copper-transporting P1B-Type ATPases (ATP7A, ATP7B) in a copper-responsive manner. It has also been established that GRX1 binds copper with high affinity and regulates the redox chemistry of the metallochaperone ATOX1, which delivers copper to the copper-ATPases. In this study, to further define the role of GRX1 in copper homeostasis, we examined the effects of manipulating GRX1 expression on copper homeostasis and cell survival in mouse embryonic fibroblasts and in human neuroblastoma cells (SH-SY5Y). GRX1 knockout led to cellular copper retention (especially when cultured with elevated copper) and reduced copper tolerance, while in GRX1-overexpressing cells challenged with elevated copper, there was a reduction in both intracellular copper levels and copper-induced reactive oxygen species, coupled with enhanced cell proliferation. These effects are consistent with a role for GRX1 in regulating ATP7A-mediated copper export, and further support a new function for GRX1 in neuronal copper homeostasis and in protection from copper-mediated oxidative injury.


Assuntos
Cobre/metabolismo , Glutarredoxinas/fisiologia , Neurônios/enzimologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Cobre/toxicidade , Células HEK293 , Humanos , Camundongos , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
11.
Metallomics ; 6(4): 793-808, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24522867

RESUMO

Glutaredoxins have been characterised as enzymes regulating the redox status of protein thiols via cofactors GSSG/GSH. However, such a function has not been demonstrated with physiologically relevant protein substrates in in vitro experiments. Their active sites frequently feature a Cys-xx-Cys motif that is predicted not to bind metal ions. Such motifs are also present in copper-transporting proteins such as Atox1, a human cytosolic copper metallo-chaperone. In this work, we present the first demonstration that: (i) human glutaredoxin 1 (hGrx1) efficiently catalyses interchange of the dithiol and disulfide forms of the Cys(12)-xx-Cys(15) fragment in Atox1 but does not act upon the isolated single residue Cys(41); (ii) the direction of catalysis is regulated by the GSSG/2GSH ratio and the availability of Cu(I); (iii) the active site Cys(23)-xx-Cys(26) in hGrx1 can bind Cu(I) tightly with femtomolar affinity (K(D) = 10(-15.5) M) and possesses a reduction potential of E(o)' = -118 mV at pH 7.0. In contrast, the Cys(12)-xx-Cys(15) motif in Atox1 has a higher affinity for Cu(I) (K(D) = 10(-17.4) M) and a more negative potential (E(o)' = -188 mV). These differences may be attributed primarily to the very low pKa of Cys23 in hGrx1 and allow rationalisation of conclusion (ii) above: hGrx1 may catalyse the oxidation of Atox1(dithiol) by GSSG, but not the complementary reduction of the oxidised Atox1(disulfide) by GSH unless Cu(aq)(+) is present at a concentration that allows binding of Cu(I) to reduced Atox1 but not to hGrx1. In fact, in the latter case, the catalytic preferences are reversed. Both Cys residues in the active site of hGrx1 are essential for the high affinity Cu(I) binding but the single Cys(23) residue only is required for the redox catalytic function. The molecular properties of both Atox1 and hGrx1 are consistent with a correlation between copper homeostasis and redox sulfur chemistry, as suggested by recent cell experiments. These proteins appear to have evolved the features necessary to fill multiple roles in redox regulation, Cu(I) buffering and Cu(I) transport.


Assuntos
Cobre/metabolismo , Glutarredoxinas/metabolismo , Glutationa/metabolismo , Metalochaperonas/metabolismo , Enxofre/metabolismo , Cobre/química , Proteínas de Transporte de Cobre , Glutarredoxinas/química , Glutationa/química , Humanos , Metalochaperonas/química , Modelos Moleculares , Chaperonas Moleculares , Oxirredução , Enxofre/química , Termodinâmica
12.
ACS Chem Biol ; 8(7): 1621-31, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23656859

RESUMO

The therapeutic efficacy of two bis(thiosemicarbazonato) copper complexes, glyoxalbis[N4-methylthiosemicarbazonato]Cu(II) [Cu(II)(gtsm)] and diacetylbis[N4-methylthiosemicarbazonato]Cu(II) [Cu(II)(atsm)], for the treatment of prostate cancer was assessed in cell culture and animal models. Distinctively, copper dissociates intracellularly from Cu(II)(gtsm) but is retained by Cu(II)(atsm). We further demonstrated that intracellular H2gtsm [reduced Cu(II)(gtsm)] continues to redistribute copper into a bioavailable (exchangeable) pool. Both Cu(II)(gtsm) and Cu(II)(atsm) selectively kill transformed (hyperplastic and carcinoma) prostate cell lines but, importantly, do not affect the viability of primary prostate epithelial cells. Increasing extracellular copper concentrations enhanced the therapeutic capacity of both Cu(II)(gtsm) and Cu(II)(atsm), and their ligands (H2gtsm and H2atsm) were toxic only toward cancerous prostate cells when combined with copper. Treatment of the Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) model with Cu(II)(gtsm) (2.5 mg/kg) significantly reduced prostate cancer burden (∼70%) and severity (grade), while treatment with Cu(II)(atsm) (30 mg/kg) was ineffective at the given dose. However, Cu(II)(gtsm) caused mild kidney toxicity in the mice, associated primarily with interstitial nephritis and luminal distention. Mechanistically, we demonstrated that Cu(II)(gtsm) inhibits proteasomal chymotrypsin-like activity, a feature further established as being common to copper-ionophores that increase intracellular bioavailable copper. We have demonstrated that increasing intracellular bioavailable copper can selectively kill cancerous prostate cells in vitro and in vivo and have revealed the potential for bis(thiosemicarbazone) copper complexes to be developed as therapeutics for prostate cancer.


Assuntos
Cobre/química , Cobre/farmacologia , Sistemas de Liberação de Medicamentos , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Animais , Disponibilidade Biológica , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cobre/farmacocinética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Compostos Organometálicos/farmacocinética
13.
Front Physiol ; 4: 111, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23720634

RESUMO

Altered copper homeostasis and hypercholesterolemia have been identified independently as risk factors for Alzheimer's disease (AD). Abnormal copper and cholesterol metabolism are implicated in the genesis of amyloid plaques and neurofibrillary tangles (NFT), which are two key pathological signatures of AD. Amyloidogenic processing of a sub-population of amyloid precursor protein (APP) that produces Aß occurs in cholesterol-rich lipid rafts in copper deficient AD brains. Co-localization of Aß and a paradoxical high concentration of copper in lipid rafts fosters the formation of neurotoxic Aß:copper complexes. These complexes can catalytically oxidize cholesterol to generate H2O2, oxysterols and other lipid peroxidation products that accumulate in brains of AD cases and transgenic mouse models. Tau, the core protein component of NFTs, is sensitive to interactions with copper and cholesterol, which trigger a cascade of hyperphosphorylation and aggregation preceding the generation of NFTs. Here we present an overview of copper and cholesterol metabolism in the brain, and how their integrated failure contributes to development of AD.

14.
Neurochem Int ; 62(5): 653-63, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23186747

RESUMO

Mitochondrial dysfunction and oxidative stress are currently considered two key mechanisms contributing to pathobiology in neurodegenerative conditions. The current study investigated the temporal molecular events contributing to programmed cell death after treatment with the mitochondrial complex I inhibitor rotenone. Microarray analysis was performed using cultured neocortical neurons treated with 10nM rotenone for 8, 15, and 24h. Genes showing at least ±1.2-fold change in expression at one time point were considered significant. Transcriptomic analysis of the 4178 genes probes revealed major changes to nine biological processes, including those eliciting mitochondrial dysfunction, activation of calcium signaling, increased expression of apoptotic genes, and downplay of chaperones/co-chaperones, ubiquitin-proteasome system and autophagy. These data define targets for intervention where mitochondrial complex I dysfunction plays a substantial role, most notably Parkinson's disease.


Assuntos
Autofagia/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Perfilação da Expressão Gênica , Lisossomos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Rotenona/farmacologia , Ubiquitina/metabolismo , Animais , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Lisossomos/metabolismo , Camundongos , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
15.
J Biol Chem ; 287(4): 2485-99, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22130675

RESUMO

ATP7A and ATP7B are copper-transporting P(1B)-type ATPases (Cu-ATPases) that are critical for regulating intracellular copper homeostasis. Mutations in the genes encoding ATP7A and ATP7B lead to copper deficiency and copper toxicity disorders, Menkes and Wilson diseases, respectively. Clusterin and COMMD1 were previously identified as interacting partners of these Cu-ATPases. In this study, we confirmed that clusterin and COMMD1 interact to down-regulate both ATP7A and ATP7B. Overexpression and knockdown of clusterin/COMMD1 decreased and increased, respectively, endogenous levels of ATP7A and ATP7B, consistent with a role in facilitating Cu-ATPase degradation. We demonstrate that whereas the clusterin/ATP7B interaction was enhanced by oxidative stress or mutation of ATP7B, the COMMD1/ATP7B interaction did not change under oxidative stress conditions, and only increased with ATP7B mutations that led to its misfolding. Clusterin and COMMD1 facilitated the degradation of ATP7B containing the same Wilson disease-causing C-terminal mutations via different degradation pathways, clusterin via the lysosomal pathway and COMMD1 via the proteasomal pathway. Furthermore, endogenous ATP7B existed in a complex with clusterin and COMMD1, but these interactions were neither competitive nor cooperative and occurred independently of each other. Together these data indicate that clusterin and COMMD1 represent alternative and independent systems regulating Cu-ATPase quality control, and consequently contributing to the maintenance of copper homeostasis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Clusterina/metabolismo , Proteólise , Proteínas Adaptadoras de Transdução de Sinal/genética , Adenosina Trifosfatases/genética , Animais , Células CHO , Proteínas de Transporte de Cátions/genética , Clusterina/genética , ATPases Transportadoras de Cobre , Cricetinae , Cricetulus , Células HEK293 , Degeneração Hepatolenticular/genética , Degeneração Hepatolenticular/metabolismo , Humanos , Síndrome dos Cabelos Torcidos/genética , Síndrome dos Cabelos Torcidos/metabolismo , Camundongos , Mutação , Ratos
16.
Free Radic Biol Med ; 51(11): 2060-72, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21971347

RESUMO

Copper (Cu) has a critical role in the generation of oxidative stress during neurodegeneration and cancer. Reactive oxygen species generated through abnormal elevation or deficiency of Cu can lead to lipid, protein, and DNA damage. Oxidation of DNA can induce strand breaks and is associated with altered cell fate including transformation or death. DNA repair is mediated through the action of the multimeric DNA-PK repair complex. The components of this complex are the Ku autoantigens, XRCC5 and XRCC6 (Ku80 and Ku70, respectively). How this repair complex responds to perturbed Cu homeostasis and Cu-mediated oxidative stress has not been investigated. We previously reported that XRCC5 expression is altered in response to cellular Cu levels, with low Cu inhibiting XRCC5 expression and high Cu levels enhancing expression. In this study we further investigated the interaction between XRCC5 and Cu. We report that cytosolic XRCC5 is increased in response to Cu, but not zinc, iron, or nickel, and the level of cytosolic XRCC5 correlates with protection against oxidative damage to DNA. These observations were made in both HeLa cells and fibroblasts. Cytosolic XRCC5 interacted with the Cu chaperone and detoxification protein human Atox1 homologue (HAH), and down regulation of XRCC5 expression using siRNA led to enhanced HAH expression when cells were exposed to Cu. XRCC5 could also be purified from cytosolic extracts using a Cu-loaded column. These findings provide further evidence that cytosolic XRCC5 has a key role in protection against DNA oxidation from Cu, through either direct sequestration or signaling through other Cu-detoxification molecules. Our findings have important implications for the development of therapeutic treatments targeting Cu in neurodegeneration and/or cancer.


Assuntos
Cobre/metabolismo , Citosol/metabolismo , DNA Helicases/metabolismo , Antígenos Nucleares/biossíntese , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cobre/farmacologia , Citosol/efeitos dos fármacos , Dano ao DNA , DNA Helicases/biossíntese , Reparo do DNA , Proteínas de Ligação a DNA/biossíntese , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Autoantígeno Ku , Estresse Oxidativo/efeitos dos fármacos
17.
J Biol Chem ; 286(13): 11047-55, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21258123

RESUMO

Literature estimates of metal-protein affinities are widely scattered for many systems, as highlighted by the class of metallo-chaperone proteins, which includes human Atox1. The discrepancies may be attributed to unreliable detection probes and/or inconsistent affinity standards. In this study, application of the four Cu(I) ligand probes bicinchoninate, bathocuproine disulfonate, dithiothreitol (Dtt), and glutathione (GSH) is reviewed, and their Cu(I) affinities are re-estimated and unified. Excess bicinchoninate or bathocuproine disulfonate reacts with Cu(I) to yield distinct 1:2 chromatophoric complexes [Cu(I)L(2)](3-) with formation constants ß(2) = 10(17.2) and 10(19.8) m(-2), respectively. These constants do not depend on proton concentration for pH ≥7.0. Consequently, they are a pair of complementary and stable probes capable of detecting free Cu(+) concentrations from 10(-12) to 10(-19) m. Dtt binds Cu(I) with K(D) ∼10(-15) m at pH 7, but it is air-sensitive, and its Cu(I) affinity varies with pH. The Cu(I) binding properties of Atox1 and related proteins (including the fifth and sixth domains at the N terminus of the Wilson protein ATP7B) were assessed with these probes. The results demonstrate the following: (i) their use permits the stoichiometry of high affinity Cu(I) binding and the individual quantitative affinities (K(D) values) to be determined reliably via noncompetitive and competitive reactions, respectively; (ii) the scattered literature values are unified by using reliable probes on a unified scale; and (iii) Atox1-type proteins bind Cu(I) with sub-femtomolar affinities, consistent with tight control of labile Cu(+) concentrations in living cells.


Assuntos
Proteínas de Transporte de Cátions/química , Cobre/química , Chaperonas Moleculares/química , Quinolinas/química , Proteínas de Transporte de Cátions/metabolismo , Cobre/metabolismo , Proteínas de Transporte de Cobre , Humanos , Metalochaperonas , Chaperonas Moleculares/metabolismo , Estrutura Terciária de Proteína
18.
J Biol Chem ; 286(12): 10073-83, 2011 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-21242307

RESUMO

The copper-transporting P(1B)-type ATPases (Cu-ATPases) ATP7A and ATP7B are key regulators of physiological copper levels. They function to maintain intracellular copper homeostasis by delivering copper to secretory compartments and by trafficking toward the cell periphery to export excess copper. Mutations in the genes encoding ATP7A and ATP7B lead to copper deficiency and toxicity disorders, Menkes and Wilson diseases, respectively. This report describes the interaction between the Cu-ATPases and clusterin and demonstrates a chaperone-like role for clusterin in facilitating their degradation. Clusterin interacted with both ATP7A and ATP7B in mammalian cells. This interaction increased under conditions of oxidative stress and with mutations in ATP7B that led to its misfolding and mislocalization. A Wilson disease patient mutation (G85V) led to enhanced ATP7B turnover, which was further exacerbated when cells overexpressed clusterin. We demonstrated that clusterin-facilitated degradation of mutant ATP7B is likely to involve the lysosomal pathway. The knockdown and overexpression of clusterin increased and decreased, respectively, the Cu-ATPase-mediated copper export capacity of cells. These results highlight a new role for intracellular clusterin in mediating Cu-ATPase quality control and hence in the normal maintenance of copper homeostasis, and in promoting cell survival in the context of disease. Based on our findings, it is possible that variations in clusterin expression and function could contribute to the variable clinical expression of Menkes and Wilson diseases.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Clusterina/metabolismo , Degeneração Hepatolenticular/metabolismo , Síndrome dos Cabelos Torcidos/metabolismo , Dobramento de Proteína , Adenosina Trifosfatases/genética , Animais , Células CHO , Proteínas de Transporte de Cátions/genética , Clusterina/genética , Cobre/metabolismo , ATPases Transportadoras de Cobre , Cricetinae , Cricetulus , Células HEK293 , Células Hep G2 , Degeneração Hepatolenticular/genética , Humanos , Lisossomos/genética , Lisossomos/metabolismo , Síndrome dos Cabelos Torcidos/genética
19.
J Biol Chem ; 285(35): 27111-27121, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20566629

RESUMO

The copper-transporting P-type ATPases (Cu-ATPases), ATP7A and ATP7B, are essential for the regulation of intracellular copper homeostasis. In this report we describe new roles for glutathione (GSH) and glutaredoxin1 (GRX1) in Cu homeostasis through their regulation of Cu-ATPase activity. GRX1 is a thiol oxidoreductase that catalyzes the reversible reduction of GSH-mixed disulfides to their respective sulfhydryls (deglutathionylation). Here, we demonstrated that glutathionylation of the Cu-ATPases and their interaction with GRX1 were affected by alterations in Cu levels. The data support our hypothesis that the Cu-ATPases serve as substrates for Cu-dependent GRX1-mediated deglutathionylation. This in turn liberates the Cu-ATPase cysteinyl thiol groups for Cu binding and transport. GSH depletion experiments led to reversible inhibition of the Cu-ATPases that correlated with effects on intracellular Cu levels and GRX1 activity. Finally, knockdown of GRX1 expression resulted in an increase in intracellular Cu accumulation. Together, these data directly implicate GSH and GRX1 with important new roles in redox regulation of the Cu-ATPases, through modulation of Cu binding by the Cu-ATPase cysteine motifs.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Cobre/metabolismo , Glutarredoxinas/metabolismo , Glutationa/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Adenosina Trifosfatases/genética , Animais , Transporte Biológico/fisiologia , Células CHO , Proteínas de Transporte de Cátions/genética , ATPases Transportadoras de Cobre , Cricetinae , Cricetulus , Técnicas de Silenciamento de Genes , Glutarredoxinas/genética , Glutationa/genética , Células Hep G2 , Humanos , Ligação Proteica/fisiologia
20.
Int J Biochem Cell Biol ; 42(2): 206-9, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19922814

RESUMO

Copper (Cu) has a role in a diverse and increasing number of pathways, physiological and disease processes. These roles are testament to the fundamental importance of Cu in biology and the need to understand the mechanisms that regulate Cu homeostasis. The mammalian Cu-transporting P-type ATPases ATP7A and ATP7B are two key proteins that regulate the Cu status of the body. They transport Cu across cellular membranes for biosynthetic and protective functions, enabling Cu to fulfill its role as a catalytic and structural cofactor for many essential enzymes, and to prevent a toxic build-up of Cu inside cells. A variety of regulatory mechanisms operate at transcriptional and post-translational levels to ensure adequate Cu supplies for both physiological and pathophysiological processes. This review summarizes the recent literature that is revealing the emerging roles of the Cu-ATPases in health and disease.


Assuntos
Adenosina Trifosfatases/metabolismo , Cobre/metabolismo , Adenosina Trifosfatases/química , Animais , Transporte Biológico , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...